MENU
Toggle navigation
Products
AmeriVacS Vacuum Sealers
AVN Series
AVS Series
CAVN Series
CAVS Series
AVC Series
AVP Series
Atrix Vacuums
Benchpro Workstations
Cleanroom
ESD Turntable
Field Service
Floor Mats
Rubber Floor Mats
Garments, Gloves, and Booties
Disposable Smocks
Gloves, Dissipative
Booties
Gibo Kodama Chairs
Grounding Hardware
Drag Chain
Ground Adapters
Ground Point Adapters
Wristband Adapters
Banana Plug Attachments
Closeout Grounding Hardware and Adapters
Ionizers
Ionizers for Critical Environments
Ionizers for Electronics Production
Bench Top Ionizers
Data Converters
Kasuga
MicroCare™ ESD Wipes
Personnel Grounding
Foot Grounders
Economy Heel Grounders
General Use Foot Grounders
Premium Foot Grounders
Closeout Foot Grounders
Wrist Straps
Dual Wire Wrist Straps and Coil Cords
Single Wire Wrist Straps and Coil Cords
Closeout Wrist Straps and Coil Cords
Static Clean
Balanced Ionizer Blower
Particle Trap
SelecTile ESD™ Floor Tile
Static Dynamics Cart Grounding
Statico
Continuous Monitoring
Foot Grounders
Gloves
Grounding Hardware
Bench Mounts
Common Point Grounds
Dome Style
Standard Snap Style
Snaps
Ionization
Measurement
Resistance Meters
Static Field Meters
Monitors
Mats
2-Layer Rubber
Single-Layer Vinyl
3-Layer Vinyl
Multiple-Layer Vinyl
Anti-Fatigue
V-Grove
Packaging
Personnel Grounding Testers
Tape
Clear
Clear with ESD Symbols
Grid
High Temperature
Red
Isle and Floor
Wrist Straps and Coil Cords
Disposable
Dual Conductor
Elastic
Metal
Velcro
Tacky Mats
Testing and Monitoring
Calibration Units
Continuous Monitors
Dual Wire Resistance Monitors
Single Wire AC Capacitance Monitors
Field Meters
Periodic Wrist Strap and Footwear Testers
Combo Wrist Strap & Footwear Testers
Footwear Testers
Closeout Testers and Monitors
Trustat®
Grounding Products
Heel Grounders
Ionizers
Smocks
Worksurface Mats
Wrist Straps and Coil Cords
Workstation Accessories
Dissipative Chair Cover
Workstation Mats
Dissipative Rubber Mat
Tray Liners
Mat Kits
Factory Closeouts
Closeout - Workstation Mats
Closeout - Accessories
Closeout Foot Grounders
Closeout Smocks, Gloves, and Finger Cots
Closeout - Packaging and Handling
Closeout Antistatic Tape
Closeout Labels
Closeout Metal In Bags
Closeout ESD Bags
Closeout Workstation Pouches
Closeout Testers and Monitors
Closeout Wrist Straps and Coil Cords
Closeout - Miscellaneous Coil Cords
Closeout - 4mm Single Wire Wrist Straps and Coil Cords
Closeout - 4mm Dual Wire Wrist Straps and Coil Cords
Closeout - 7mm Single Wire Wrist Straps and Coil Cords
Closeout - 7mm Dual Wire Wrist Straps and Coil Cords
Closeout - 10mm Single Wire Wrist Straps and Coil Cords
Closeout - 10mm Dual Wire Wrist Straps and Coil Cords
New Products
Resources
Overstock
REGISTER / LOGIN
SHOP
CART (
0
)
SUBSCRIBE TO OUR EMAIL LIST - Be the first to know
about exclusive deals, tips, new products & more!
Questions And Answers
#
659
List All Questions
Search
List by Category
Question
Could you please tell me exactly how fast the electron/proton (static) travel within a:
a) Conductor
b) Human Body
Anonymous, Ampang, MalaysiaWe have the standard cloth roll-a-round adjustable type for all the production lines. We also have constant ESD monitors installed at all the ESD workstations. I was asked to check on the chairs that are listed as static controlled with a drag chain. We don't have any ESD wax or tile on the floors, just a grey painted surface. I know that with conductive casters the chairs won't generate static like the typical chairs do, but there are some that think you don't need to wear a Wrist strap if you are sitting in one of these "ESD Safe chairs. I'm having a hard time convincing them otherwise, can you help me out. –Anonymous, Radio Frequency Systems, Phoenix, Arizona
Answer
A human body (outer surface of, e.g., skin) is a conductor. I assume what you meant by conductor is a very conductive material such as a metal surface. I also assume you are referring to an ElectroStatic Discharge (ESD) which takes the charged imbalance on the conductor and neutralizes it (i.e., drain it to ground) upon contact with ground.
A quick answer is:
Very very fast for metal ( ~ 2x10
-18
seconds)
Sort of fast for human body (> 2x10
-6
seconds)
A more specific answer is: assume the worst case, class 0, which has a 0 to 249 Volt tolerance. Applying the HBM, a conservative worst case capacitance would be 200 pF, twice that of the HBM and resistance of 10K? . Therefore the maximum power (P) level based on Ohm’s Law is P=V2/R (J/s) and the worst case HBM is ((249)2/10K)=6.2 Watts or Joules per second (Js-1).
The maximum energy (E) stored in a worst case HBM capacitance (C) of 200 pF and at a maximum voltage (V) of 249 Volts, (using E=1/2 CV2), yields 6.2 ? J. The next concern is to relate energy to time. The time constant (? ) is the measure of the length in time, in a natural response system, for the discharge current to die down to a negligible value (assume 1% of the original signal). For an RC circuit, the time constant (? ) is equivalent to the multiple of the equivalent resistance and capacitance. In this case, the time constant (? ) of our RC circuit is (10K? )(200pF) or ? = 2 ? s. Discharging this energy upon touching a conductor at zero volts yields a current, (using I=P/V), of (6.2Js-1)/(249V) or 24.8 mA. To avoid damaging a class 0 ESDS device, the discharge current must be below 24.8 mA. Engineering in a "2x" safety factor, the maximum discharge current would be 12.4 mA. To maintain a discharge current below 12.4 mA, we need to look at our grounding equipment on the ESDS workbench.
The rate at which 6.2 ? J of energy discharges is very important. To fast a discharge will lead to an ESD Event, which can electromagnetically be measured using a simple loop antenna attached to a high impedance input of a high-speed storage scope. The faster the discharge the greater the discharge current becomes as well as the emf (electromotive force) on the loop antenna from the EMI (ElectroMagnetic Interference). Table III depicts the discharge current for 6.2 ? J at varying discharge times. We are assuming lossless conditions during the discharge for worst case. For our example, to keep the discharge current below 12.4 mA, the discharge rate [from Table III] must be no quicker than 2.01 ? s. This energy-based-time constraint forms the lower boundary of the controlled discharge rate.
Related Categories:
ESD
ESD Models
If you have found this Q/A useful, please rate it based on its helpfulness.
This question has been rated:
(
0
% at
0
Ratings)